RCE Developer Guide
Build 10.4.1.0202306010810_SNAPSHOT

Table of Contents

L P O A0R e e 1
Lo ABSITBCE et 1

1.2, Intended AUAIENCEcoiiiieeiii ettt 1

1.3, License INFOrMIBLIONiieieieiei et 1

1.4, Compatible Operating SYStEIMSiiiiiiiieiii e 1
1.4.1. Support of 32 Bit Operating SYyStEMSc.uuieiiiiiiieeeiie e 2

22 111 (oo (8 oi (oo R TSP UPP PP 3
2.1. Getting Started with RCE DeVEIOPMENTuuiiiiiiiieieiiie e 3
2.1.1. Install DK, Eclipse, and the Checkstyle PIugincccooveviiiiiieiiiiinienennnn, 3

2.1.2. Importing and building RCEcoouiiiiiiiii e 3

2.1.3. Running RCE from ECHIPSEuiiiiiiiiceiii e 6

2.1.4. Configuring Workspace Mechanic (Optional)cccuevveieiiiieiiiiineeciien, 6

2.1.5. Configuring Code Formatting and CheckStyle Rules (optional) 7

2.1.6. Building a standalone RCE version from Eclipseccccooiviiiiiiiiciiinnecens 7

2.1.7. Building from the command liNeoooiiiiiiiiiiii e 8

2.2. Common Classes and INErfaCESocuuiiiiii e 8
220 GENEIAl . 9

2.2.2. Components and WOrkflOWSoveiiiiiiiiiiic e 9

2.2.3 ULHHTIES oot 9

3. BUild @nd INIESIIUCTUIEi ittt e s 10
3.1. Build Structure and DepEndENCIESoeieiiiieiiiiie e 10
3.1.1. Overview: Build and Versioning SCOPESccuuuieiiriinieiiiiiieeieiieeeeeiinn 10

3.1.2. Changing Version DependenCiesveveeuuieiieiiieieiiie e 10

3.1.2.1. Switching "RCE Core" to another version of "RCE Platform” 10

3.2. Release and VErsioning PrOCESSociiiiiieiiiiiieeeei et 10
3.2.1. Overview: The Release and Versioning ProCESSuvvvveiiiiieiiiiineeeeinnnne, 10

3.2.2. Step 1: Trunk Preparationscveeeeeeeeiiie et 10

3.2.3. Step 2: Release candidate building and testingovvvvvviiiiiiiiiicie 10

3.2.4. Step 3: Publishing the final releaseccooviviiiiiiiii e, 11

3.2.5. Step 4: POSt-rel€8Se aCtONScccvviiiiiiiieeeee e 11

3.2.5.1. Upgrading Version Numbers (and Verification)ccooeeevnnennnnn. 11

3.2.6. Creating a maintenance/hotfiX rel@asecoovvvviiiiiiiiiii e 11

3.3. Build Process FAQ / TipS @nd TTiCKScceuvuieiiiiiieeeiiii e 12

4. CoAING GUILEITNES ..ottt ettt e e e enaans 14
4.1. Adding a new Bundle with Production Codecccuuiiiiiiiiiiiiiiiieece e 14
4.1.0. RCE SIUCTUIE ...eviiiiiieeti ettt ettt et e e e e en e ea e ees 14

4.1.2. Create anew EClipSe PrOJECuviiiiiiiiiiii e 14

4.1.3. Add the new Bundle to Mavenooooiiiieiiiiiiie e 15

4.1.4. Add the new Plug-in to the RCE productcoeuviieiiiiinneiiiineeciiinnen 16

4.2. Developing 8 NEeW COMPONENTu.iiiiitn ettt e e et e e et e e e e e eeneans 16
4.2.1. Component BUNdle SELUPuiiiiiiieiii e 16

4.2.2. Creating the execution Bundleccouiiiiiiiiiiiii e 17

4.2.3. Creating 2 common BUNAIeoiiiiiiiiii e 21

4.2.4. Creating @ gui BUNdIeooiiiiiiiiiii e 21

4.2.5. Adding your new component 10 SVNviiiiiiiiiiiiiiie e 23

A3, LOUGING - eeetttieeeeet ettt ettt ettt 23
4.3.1. General CoNfigurationueeeeetne e 23

4.3.2. VErDOSE LOGUING . .v.ueieinieieiii ettt ettt e e 23

5. DEBUGGING ettt 25
5.1. Tips, Tricks, and GOOd PractiCesoieuuiiiiiiiiiie e 25
5.1.1. Finding Resource Leaksinthe Ul using S-Leakcccovovviiiiiiiiiiiiiinnecennn, 25

5.1.2. Profiling RCE using ViSUaIVIMccooiiiiiiiiiiiiei e 25

5.1.3. Debugging GUI layouts uSINg SWT SPY ..ceevvneiiiiiieieiiieeeeei e 25

6. Quality ASSUraNCe and TESHINGcuuuuiieiiiieiiii ettt e e 27
6.1. AULOMELED GUI TESHNG ... eeeertneeiiit ettt ettt e e e e e et e e e ena e eees 27

RCE Developer Guide

6.1.1. GEtNG StAMEH ..vuiiieeieii e 27

6.2. Integrated Test SCript RUNNEYc.uuiiii e 28
L35 I @ Tq T 11 = (o) o P 28

6.2.2. TeSt DEFINITIONSuuiiiiicii e e e e e e e eanes 29

6.2.3. EXECULING TEIS ..uiiviiiii i e e e e e e e aens 30

B.2.4. EXAMPIES ..niiieiiiie e 31

T2 TP 31

7. ComMaNd CONSOIEiiiieii e e e e e e e e e e e et e e e e e e e eaens 32
7.1. RCE'S ComMand CONSOIEuuiiiieiiiieiie e e e e e e e e e e e e e aanas 32
5 05 T T3¢0 7= 32

.02, PalaIMELENS ..iuitiiii ittt 39

7.1.3. DocUmMENtation gENEIaHIONevveeiii e e e e e e e e e e e e e e e e e eaneees 40

8. Licensing and Copyrightccvuuiiiii e e 41
8.1. CopYright SEAIEMENTS .. cevuueiii i eeii e e e e e e e e e e e e e et e e et e e et eeaaaeeanaees 41
8.1.1. Current Year DEfiNitioncc.viiiiiiiiiieiie e e 41

List of Tables

4.1. Useful Verbose Logging Identifiers

Chapter 1. Preface

This chapter gives an introduction to RCE.

1.1. Abstract

RCE (Remote Component Environment) is an open source software that helps engineers, scientists
and othersto create, manage and execute complex cal culation and simulation workflows. A workflow
in RCE consists of components with predefined inputs and outputs connected to each other. A
component can be asimulation tool, atool for dataaccess, or auser-defined script. Connections define
which data flows from one component to another. There are predefined components with common
functionalities, like an optimizer or a cluster component. Additionally, users can integrate their own
tools. RCE instances can be connected with each other. Components can be executed locally or on
remote instances of RCE (if the component is configured to alow this). Using these building blocks,
use cases for complex distributed applications can be solved with RCE.

1.2. Intended audience

This document isintended for devel opers who would like to extend RCE according to their needs and/
or contribute to RCE's development.

1.3. License Information

RCE is published under the Eclipse Public Licence (EPL) 1.0. It is based on Eclipse RCP 4.8.0
(Photon), which is also published under the Eclipse Public Licence (EPL) 1.0. RCE also makes use
of various libraries which may not be covered by the EPL; for detailed information, see the file
"THIRD_PARTY" in the root folder of an RCE installation. (To review this file without installing
RCE, open the RCE release .zip file.)

For downloads and further information, please visit https.//rcenvironment.de/.

1.4. Compatible Operating Systems

RCE releases are provided for Windows and Linux. It isregularly tested on
* Windows 10

¢ Windows Server 2019

CentOS 8

Debian 11

Ubuntu 20.04 LTS

and should also run on Mint 10.04 and SUSE Linux Enterprise Server 15 SP2.

https://rcenvironment.de/

Preface

1.4.1. Support of 32 Bit Operating Systems

Starting with release 8.0.0, RCE isonly shipped for 64 bit systems. If you still require 32 bit packages,
you can continue to use previous RCE releases, but there will be no standard feature or bugfix updates

for them.

Chapter 2. Introduction

2.1. Getting Started with RCE Development

This section covers setting up a devel opment environment for running, modifying and extending RCE
onyour local machine. After completing this section you should be ableto build and run adevel opment
version of RCE from your local development environment.

The development environment is built on top of

AdoptOpenJDK 8 and
Eclipse for RCP and RAP Developers, Version 2022-03

Eclipse Checkstyle Plug-in

2.1.1. Install JDK, Eclipse, and the Checkstyle Plugin

Make sure you have a Java Development Kit [https.//www.oracle.com/java/technologies/
downloads/] installed on your system in version 8ul61 or higher. The canonical choice of JDK is
AdoptOpenJDK Version 8 [https://adoptopenjdk.net/variant=openjdk8].

Note

If you areinstalling a JDK on a centrally administrated computer that already has Javainstalled, it is usually a
good ideato uncheck the "Install public JRE" option during installation.

Download and unpack "Eclipse for RCP and RAP Developers' in version "2022-03" from
the Eclipse Foundation [https://www.eclipse.org/downl oads/packages/rel ease/2022-03/r/eclipse-
ide-rcp-and-rap-developers). In the following sections, this version is assumed.

Note

AdoptOpenJDK 8 and Eclipse 2022-03 are most widespread among devel opers and provides arelatively stable
basis for development. However, newer versions of both have been reported to work anecdotally.

Adapt the ecl i pse.ini file found in the base directory of your Eclipse instalation. The
following changes are required for productive development of RCE. For additional options, please
refer to the Eclipse documentation at https://wiki.eclipse.org/Eclipse.ini.

 Set the proper path to your JDK installation by adapting the - vmparameter: <your pat h>/
j dk8/ bi n immediately below the - vimline.

» Change the maximum heap size to at least 2 GiB by adapting the - Xmx parameter somewhere
below - virar gs. Changethislineto, e.g. - Xnx2048m Add such alineif it does not exist.

Start Eclipse and install the "Eclipse Checkstyle Plug-in" via Help -> Eclipse Marketplace ->
Checkstyle. Restart Eclipse if you are prompted.

2.1.2. Importing and building RCE

If you already have other projects in your Eclipse workspace, it is recommended to create a new
workspace for RCE. There are some necessary global settings that may interfere with the other
projects (e.g. the so-called "target platform™).

https://www.oracle.com/java/technologies/downloads/
https://www.oracle.com/java/technologies/downloads/
https://www.oracle.com/java/technologies/downloads/
https://adoptopenjdk.net/?variant=openjdk8
https://adoptopenjdk.net/?variant=openjdk8
https://www.eclipse.org/downloads/packages/release/2022-03/r/eclipse-ide-rcp-and-rap-developers
https://www.eclipse.org/downloads/packages/release/2022-03/r/eclipse-ide-rcp-and-rap-developers
https://www.eclipse.org/downloads/packages/release/2022-03/r/eclipse-ide-rcp-and-rap-developers
https://wiki.eclipse.org/Eclipse.ini

Introduction

Disable "Project > Build Automatically" in the main menu to speed up the next steps.

In the eclipse preferences (avaible from "Window"-> "Preferences’), open the page "Plugin-
Development” -> "DS Annotations' and check the box for "Generate descriptors for annotated
sources." Set the descriptor directory to "OSGI-INF/generated".

There are currently three ways to properly import the complete RCE source code: from the SVN
repository, from provided zip files, or from GitHub. At the moment, only the SVN approach
provides access to the current development tree; for the time being, the zip files and the GitHub
repository are only updated on release.

Option 1 - Importing from the RCE SVN repository, if you have access to it (as the repository is
currently hosted internally at DLRY):

« Install Subclipse [https://marketplace.eclipse.org/content/subclipse] (or aternatively Subversive
[https://polarion.plm.automation.siemens.com/products/svn/subversive]) if you don't already
have an Eclipse SVN plugin installed. Note that when using Subclipse, you may have to switch
to the "SvnKit" SV N interface in the "Team > SVN" preferences; thisis normal.

* Openthe"SVN Repositories' view (Window > Show View > Other > SVN).

e Addhttps://svn.dlr.de/rcel/ new rcel/trunk asanew SVN repository location.

« Expand the location entry and select all projects (the entries starting with "de.rcenvironment™)
inside of it.

» Right-click the selected projects, select "Checkout" and confirm if necessary. Y ou should now
see along list of projectsin the "Package Explorer” on the left.

Note

If the checkout was performed correctly, there should be asmall "M" (for "Maven") on most projects' icons,
and also asmall "J* (for "Java') on most of them.

Option 2 - Importing from the zip files provided with each release:

e Browse to the ‘“"source® sub-folder of a releases download location,
for example https://updates-external.sc.dlr.de/rce/10.x/products/
st andar d/ r el eases/ 10. 1. 0/ sour ce/ for the 10.1.0 release. Download both zip files,
"source" and "additions’; the latter contains binary artifacts like the Dakota and TiGLViewer
executables.

« Extract both archives into the same target directory. Y ou should see alist of more than 200 sub-
folders, al except one beginning with "de.rcenvironment".

« In Eclipse, select "File > Import > Genera > Existing Projects into Workspace" and choose the
directory that you unpacked the archivesinto. Y ou should see along list of projects, once again,
all except one beginning with "de.rcenvironment”. Select all projects confirm the import.

Note

Make sure not to change the " Search for nested projects' option in theimport dialog; it must not be selected/
checked.

Option 3 - Importing from GitHub:
 For successfully importing the RCE project, you need a Git client with LFS support.

e Clonehttps://github. com rcenvironnent/rce intoadirectory of your choice.

4

https://marketplace.eclipse.org/content/subclipse
https://marketplace.eclipse.org/content/subclipse
https://polarion.plm.automation.siemens.com/products/svn/subversive
https://polarion.plm.automation.siemens.com/products/svn/subversive
https://svn.dlr.de/rce/new/rce/trunk

Introduction

Note

The clone settings of certain Git clients (e.g. TortoiseGit), have an "LFS" option. Make sure that this option
is enabled before you clone.

¢ Check out the mast er branch; by default, this points to the source code of the latest release.

« In Eclipse, select "File > Import > Genera > Existing Projects into Workspace" and choose the
directory that you unpacked the archivesinto. Y ou should see along list of projects, once again,
all except one beginning with "de.rcenvironment”. Select al projects confirm the import.

Note

Make sure not to change the " Search for nested projects' option in theimport dialog; it must not be selected/
checked.

« After you have successfully imported the RCE projects using one of the above methods, the next
stepisto set the RCE target platform in your workspace. A target platform providesexternal artifacts
like the Eclipse RCP framework and various libraries. To get started with RCE development, the
easiest way isto use a precompiled target platform. For convenience, there is a Eclipse .target file
insidethe code basethat always points at an appropriate precompil ed target platform rel ease. Follow
these stepsto apply it:

« In the Project Explorer, navigate to the de. rcenvi ronnment/eclipse/tp/renote
folder.

e Openthedefaul t _rel ease_or_snapshot .t ar get fileby double-clickingit.

e Select the “"Locations' list entry sarting with "https://updates-
external . sc.dlr.de/"andclick"Update". After awhile, thelist entry's description should
end with something similar to "242 plugins available" (the exact number may vary). Save the
fileif necessary.

» Click "Set astarget platform" in the top right corner. Y ou can close the .target file after this.

* If you previously changed the global Java compiler compliance level to 1.7 for previous RCE
releases, it is recommended to revert this setting to default, or explicitly set it to 1.8. This setting
can be accessed by opening "Window > Preferences’ from the menu, and then navigating to the
"Java > Compiler" tab. If you never actively changed this setting, no action is required.

e Enable "Project > Build Automatically". Eclipse will start building all projects against the new
target platform, which provides al required libraries and OSGi bundles.

« At this point, most projects will have a red error marker. To fix this, open the "Problems" view
("Window > Show View > Problems"). You should see a lot of "Plugin execution not covered
by lifecycle configuration” entries. Right-click one of them, select "Quick Fix" from the context
menu, select "Discover new m2e connectors” and click "Finish". Eclipse should present one or more
installation options with "Tycho" in their name. Confirm their installation and restart eclipse.

Note

Y ou only need to do this once per Eclipse installation.

 After this, all RCE bundles should compile without errors (with the exceptions noted below), and
you are ready to start developing. If thisis not the case, try running "Project > Clean > Clean al
projects” from the main menu.

Introduction

2.1.3.

2.1.4.

Note

On Linux platforms, there will be compilation errors in some Windows-only Excel and TiGLViewer bundles
(5 and 3 projects, respectively). We don't have an elegant solution for this problem yet. Y ou can smply close
these projects to get rid of the errors, as they won't be loaded at runtime anyway.

Running RCE from Eclipse

Before proceeding to the more detailled settings, try running RCE from Eclipse to verify your setup.

» There are several pre-defined launch configurations for RCE. To find them, navigate to
de.rcenvironnent/ ecl i pse/l aunch inthe"Project Explorer" on the left.

» A good starting point is the "default" configuration. Right-click the "rce.default.launch” file and
choose "Run As > rce.default.launch™" from the context menu.

* RCE should now start and prompt for an RCE workspace location. Confirm the default value or
choose another empty folder.

Configuring Workspace Mechanic (optional)

Note

The Workspace Mechanic project initsoriginal formisnot being maintained anymore, and the original project site
isgone. However, it has been forked and is being continued by anew maintainer at thislocation [https://github.com/
afsch/workspacemechanic/]. While this is not an "official" successor, it seems to be the de-facto location of this
project now.

Workspace Mechanic (which can be installed via Eclipse Marketplace from this location [https:/
marketplace.eclipse.org/content/workspace-mechanic]) is an Eclipse plugin that automates common
settings in local workspaces. For RCE, the most important settings are the Java code formatting rules
and templates. Other settings are provided for convenience, like disabling the console output limit, or
showing line numbers in the editor.

Configuring Workspace Mechanic consists of copying a set of "rule” files to a location where the
plugin can find them. There are two options for this:

o If you want to apply the rules to al Eclipse installations on your machine, use the
. ecl i pse/ mechani c subfolder in your homedirectory; by default, thisisC: \ User s\ <user
i d>\.eclipse\mechanic.

» To apply the rules to a single Eclipse installation only, use <ecli pse installation
f ol der >\ confi gurati on\com googl e. ecl i pse. mechani c\ nechani c.

Using your system'’s file browser, navigate to the folder of your choice. Using any SVN tool, check
outhttps://svn.dlr.de/rcel/ new nmetal/ eclipse/ mechani c/ intoasub-folder called
"checkout " withinit. (Note that the actual name of the sub-folder is not relevant; adapt if you like.)
This sub-folder now contains common rulesonitstop level, and optional or experimental rulesin sub-
folders. Copy all common rulesto the parent folder (the one you started in), and add any optional rules
that you want to apply aswell. (TODO add and describe batch/shell files for this.)

Note

These rule fileswill most likely be integrated into the main project at some point, making this extra checkout step
unnecessary. Please note that these rule files are currently not available as part of the GitHub source code mirror

https://github.com/alfsch/workspacemechanic/
https://github.com/alfsch/workspacemechanic/
https://github.com/alfsch/workspacemechanic/
https://marketplace.eclipse.org/content/workspace-mechanic
https://marketplace.eclipse.org/content/workspace-mechanic
https://marketplace.eclipse.org/content/workspace-mechanic
https://github.com/rcenvironment/rce

Introduction

2.1.5.

[https://github.com/rcenvironment/rce] or the rel eased source zip files either, which makesthem inaccessible unless
you have access to the internal SVN server.

The next time you open a workspace, Workspace Mechanic should pick up these rule files and
show a notice asking if it should apply them. See the plugin's web site [https://github.com/alfsch/
workspacemechanic/] for further information.

Configuring Code Formatting and CheckStyle

Rules (optional)

2.1.6.

If you only plan to try out or modify RCE locally, you can safely skip this section. If you plan to
commit your changes to the central code base, however, you need these settings to get your code
accepted into the repository. Code that does not match the style guidelines will be refused on commit.
The Checkstyle-CS plugin simplifies development by highlighting violations that need to be fixed.

To configure Checkstyle-CS for RCE:
» Open the Checkstyle preferences (Window > Preferences > Checkstyle).
e Click "New" on theright side. Enter "RCE" as the name of the configuration.

» Choose "Project Relative Configuration”, click "Browse" and choose de. r cenvi r onment /
checkstyl e/ checks. xm .

* Click "OKk" in the main dialog. The list of configurations should now have three entries; select
"RCE" and click "Set as Default" on the right side.

 Closethe preferences with "Apply and Close" and confirm the rebuild.

Note

Weare currently using version 6.19 of the Eclipse CheckStyle plugin within the development team. Using anewer
version (e.g. 8.0) works aswell, but you may see error markers for constructs that do not actually violate the RCE
code guidelines. Versions > 8.0 do not work with current code guidelines. We will most likely adapt/migrate the
CheckStyle settings in the near future.

To configure the Eclipse source code formatter:
» Open the code formatter preferences (Window > Preferences > Java > Code Style > Formatter).

» Click "Import", browse to your de. r cenvi ronnment / ecl i pse/ checkout folder and choose
the"ecl i pse-formatter. xm " file.

* You should now see "RCE" asthe "Active Profil€e".

e Click "Apply and Close" to activate the settings.

Note

There are rare cases where these code formatter settings lead to source files that are not being accepted by our
CheckStylerules. Theseinconsistencies are being collected and tracked in i ssue #0005898 [https://mantis.sc.dlr.de/
view.php?id=5898], and will be fixed/addressed in a future update.

Building a standalone RCE version from Eclipse

Y ou can a'so build a standalone version of RCE from Eclipse using Maven 3.5.3.

e There are several pre-defined build configurations for RCE. To find them, navigate to
de. rcenvironnent/ ecl i pse/ bui | dinthe"Project Explorer" on the left.

https://github.com/rcenvironment/rce
https://github.com/alfsch/workspacemechanic/
https://github.com/alfsch/workspacemechanic/
https://github.com/alfsch/workspacemechanic/
https://mantis.sc.dlr.de/view.php?id=5898
https://mantis.sc.dlr.de/view.php?id=5898
https://mantis.sc.dlr.de/view.php?id=5898

Introduction

2.1.7.

To run a.launch file, right-click on it and choose the single entry in the "Run As" submenu of the
context menu that appears.

Note

Be aware to configure the recommended Maven Runtime Environment in version 3.5.3. In Eclipse you can
select for each .launch file alocally installed Maven Runtime via"Run > Run Configurations ...".

Building astandalone RCE installation (whichiscalled a"product” in Eclipse RCP terms) generally
consists of two steps: Providing a so-called "platform repository", and then building the actual
product on top of it. There are two possible approaches for this:

e Using the .launch filesinthe "usi ng default renote repository buil ds" sub-
folder, it is possible to avoid building your own platform repository, and fetch a pre-built one
from the main repository servers (currently hosted at DLR) instead. One reason for this can be
be to ensure that you are building against the exact same platform repository as a certain RCE
release. Another reason is to simplify your local development setup if you have no reason to
customize the target platform setup (e.g. by adding libraries).

« Themost flexibleway to build RCE from sourceisto compilealocal platform repository yourself.
This is simply done by navigating to the "de. r cenvi ronment . pl at f or m ecl i pse
folder (from the root of your workspace) and executing the single .launch file that is located
there. On the first run, the build process may download quite a few resources from Maven
Central; subsequent runs should be fairly quick. Once the build has finished (there should be a
"SUCCESS" message near the bottom of the console output), you can build the main product
using the .launch files in the "usi ng | ocal repository buil ds" sub-folder of the
previously mentioned location.

Regardless of whether you use a pre-build platform repository or compile one locally, running the
"RCE - build default product (snapshot, using <...>) .aunchfileisthe
best way to produce a standard local product build. The other .launch files are intended for more
specific use cases.

The main product build takes several minutes to complete. Once it has finished, you will
find the .zip files containing the final product in the folder de. r cenvi ronnent / t ar get/
de. rcenvi ronnent . nodul es. reposi tory. mai nProduct/products (You may
have to refresh the de.rcenvironment project in the Project Explorer to seeit.)

Building from the command line

Building RCE completely from the command line is somewhat complicated as it is a multi-step
process in which later steps must reference the output artifacts of previous steps. To simplify this, the
command-line build will be further encapsulated by front-end scripts, which will then be documented
here. In the meantime, please use the steps described above to trigger the build process from Eclipse.

Note that both the Eclipse-based and the command-line build trigger the same Maven steps in the
background. Because of this, the build triggered from Eclipse produces the exact same artifacts as a
command-line build (which is used in Continuous Integration and for releases).

Note

TODO document the new command-line build when ready

2.2. Common Classes and Interfaces

This section lists classes and interfaces that every RCE developer should be familiar with.

Introduction

Note that at this point, this list is probably incomplete. If you come across a class you wish you had
known earlier, please let us know.

2.2.1. General

ResolvableNodel d, Explanation for Nodeldentifier: This interface represents the
InstanceNodeld, "identity" of anode, and is used whenever nodes are specified
InstanceNodeSessionld, in API calls. In general, these node identifiers (or "node ids")
LogicaNodeld, are stored and reused by nodes, so they are persistent unlessthe
LogicaNodeSessionld (former: node's operator deletes its settings folder. From a developer's
Nodel dentifier) perspective, theinner format of theseidsisusually not relevant.

TODO: Replace with explanation referring to current node
identifier approach

Package: de.rcenvironment.core.communication.common

2.2.2. Components and Workflows

TypedDatum Represents a chunk of data that is passed between the components of a workflow.
Thisisthe central abstraction of all data passing, so you will encounter it when you
start writing or modifying workflow components.

Package: de.rcenvironment.core.component.datamodel (Note: may be moved in
5.0.0)

2.2.3. Utilities

ThreadPool/SharedT hreadPool This is a central thread pool that should be used for all
asynchronous operations (except for the SWT GUI thread
itself, and GUI-embedded "background tasks'). Always use
this instead of creating Thread or Executor/ExecutorService
instances.

(TODO add code example(s), explain @TaskDescription, ...)
Package: de.rcenvironment.core.utils.common.concurrent

TempFileUtils This utility class should be used whenever atemporary file or
directory should be created. Its main benefit is that it alows
for managed cleanup of leftover temporary files/directories
(Note: This is not yet implemented!). Additional benefits
are convenience functions (like generating a temporary file
with a given filename or name pattern), central handling of
cleanup issues (like undel etabl e files), and making sure that all
temporary files are created in a consistent location.

Package: de.rcenvironment.commons (Note: will be moved in
5.0.0)

Chapter 3. Build and Infrastructure

3.1. Build Structure and Dependencies

3.1.1. Overview: Build and Versioning Scopes

TODO migrate/add content

3.1.2. Changing Version Dependencies
3.1.2.1. Switching "RCE Core" to another version of "RCE
Platform”

TODO migrate/add content

3.2. Release and Versioning Process

3.2.1. Overview: The Release and Versioning Process

Creating an RCE release and preparing for the next oneis a process that can be split into four distinct
steps (or phases):

» Trunk preparations - actions that take place in the development trunk before the release branch is
split off.

» Release candidate building and testing - creation of the release branch, building RCs on the CI
server, and applying fixesif necessary.

* Final release - creating and publishing thefinal release build, SCM tagging, posting announcements
etc.

* Post-release actions - preparing the trunk for the next release.

3.2.2. Step 1: Trunk preparations

TODO migrate/add content

3.2.3. Step 2: Release candidate building and testing

TODO migrate/add content

10

Build and Infrastructure

3.2.4.

3.2.5.

Step 3: Publishing the final release

TODO migrate/add content

Step 4: Post-release actions

3.2.5.1. Upgrading Version Numbers (and Verification)

3.2.6.

By convention, the version numbers of al plugins and features are increased in the trunk immediately
after a release has been performed. This way, every snapshot build is associated with the
upcoming release. For example, all snapshot builds after the 8.1.0 release should be named named
"8.2.0.xxx_SNAPSHOT".

The version upgrade process of RCE Core is mostly automated:

* Open ashell or command window in "/de.rcenvironment.core/maven/utils/" and run the appropriate
"upgrade-core" script for your platform (.bat on Windows, .sh on Linux). Usage:

upgrade-core{old core version} {new core version}
Example: upgr ade-core 8.0.0 8.1.0

« Build the platform repository and the full product locally to verify that the build setup is consistent;
see the "getting started" section on how to do this.

e Create aMantisissue "release x.y.z" for the new version if it does not exist yet (usually, it won't).
» Commit the changes under thisissue.
» Verify the Cl/Jenkins build
¢ (Option 1) TODO update this section for 8.1.0+
< (Option 2) Keep an eye on the standard periodic builds (nightly, "onCommit", ..) and see if they
complete normally. IMPORTANT: Thisis ONLY appropriate if you are around/available for

handling possible problems!

If the platform will change in the upcoming release, it is also necessary to upgrade the version of the
platform projects. However, we do not upgrade the platform version automatically with every RCE
release (for example RCE 8.2.0 till usesthe 8.1.0 platform, as there were no changes in the platform
between these rel eases).

The version upgrade process for the platform projectsis also mostly automated:

* Open a shell or command window in "/de.rcenvironment.platform/maven/utils/” and run the
"upgrade-version" script. Usage:

upgrade-version{old core version}{new core version}

Example: upgr ade-version 8.1.0 9.0.0

Creating a maintenance/hotfix release

When creating a release that is not based on the current development trunk, the release process is
dightly different. Such "maintenance” or "hotfix" releases must always be derived from a stable
release.

11

Build and Infrastructure

To create anew release based on a previoudly-released version:;

Create arelease branch (similar to a normal release) by copying the SVN release tag folder.
Check out this release branch to your local machine.

Asin step 4 of the standard process, upgrade the local version numbers, create a Mantis issue for
the release and commit the version changesto it. Note the change in ordering: in astandard release,
version numbers are upgraded in the trunk after the release; in a maintenance/hotfix release, they
are upgraded before the release, inside the release branch.

Apply and commit thefixes or changes you want in therelease; if you want to include specific trunk
changes, consider transfering them by using diff patches.

Perform standard step 2 (RC building and testing).
When everything is tested, perform standard step 3 (final release).

If changes were made in the release branch that should aso be in the trunk, merge them back
selectively . Unlike a normal release, you cannot simply merge all branch changes back to trunk;
take specia care not to mix up version numbers when merging.

3.3. Build Process FAQ / Tips and Tricks

This section gives answers and hints to common build issues.

Q:
A:

After running alocal product build, where do | find the generated product zips and files?

The generated files are located in de.rcenvironnent/target/
de. rcenvi ronnent . nodul es. reposi t ory. mai nProduct/ products .

When running a product build, how can | change the server URL where p2 artifacts (e.g. the
"target platform") are loaded from?

To support typical build use cases, p2 server URLSs are normally assembled from two parts:
a common URL "root" part, and a repository-specific URL segment. The default values
for these are defined in the build pre-processor script at / de. r cenvi r onnent / maven/
preprocessor/ scri pts/ RCEBui | dPreprocessor. groovy .

Note

For example, the default "target platform" repository URL for the 8.1.0 release is the concatenation of the
default URL "root" part htt ps://software. dl r.de/ updates/rce/ 8. x/repositories/

and the specific repository segmentr el eases/ 8. 1. 0. The same pattern using the same"root" URL, but
different specific segments would also be used for other repositories. However, as of 8.1.0, the "platform"
repository isthe only one used during the default build. Theonly other valid optionis"intermediate”, which
isonly used in special builds.

There are three ways to change these URLs, depending on the build use case.

e If you want to switch to a different server that provides al of the required
repositories, you can simply override the URL "root" part, and all p2 repositories
will be loaded from there. This can be done by setting the Maven property
rce. maven.repositories.default.rootUrl.

* To overide the URL root path of a single repository, set the Maven property
rce. maven.repositories.<id>rootUl, with <id> beng "plaform" or
"intermediate”.

12

Build and Infrastructure

« Alternatively, you can also override the complete URL of arepository by setting the Maven
property r ce. maven. reposi tori es. <i d>. ur| with the sameids as above.

All of these settings can be combined, with more specific settings overriding the more general
ones (e.g. acustom repository URL overrides a custom root URL).

Note that these approaches are only intended for adapting the build to your build
environment, or for local building and testing. To change the repository paths
permanently (e.g. when preparing a new release), edit the default values in the build
pre-processor script at / de. rcenvi ronnment/ maven/ preprocessor/ scripts/
RCEBui | dPr epr ocessor . gr oovy. Notethat therearetwo setsof specific repository URL
segments which are used for snapshot and RC/release builds, respectively.

| created a new snapshot / RC / release build of the "platform™ repository. What do | have to
edit to make the product build useit?

The default repository references are configured in the
def aul t Reposi toryUr | Suf fi xes map within the build pre-
processor script at /de.rcenvironnment/ maven/ preprocessor/scripts/
RCEBui | dPr epr ocessor. gr oovy. Snapshot and RC/release references are configured
separately to support developing against snapshot builds. These references are the repository-
specific URL suffixes; see the question above for examples.

Note that when preparing for a new major release, you may aso have to adapt the "root" URL
part (e.g. changing it from <. ..>/rce/ 8. x/repositories/ to<...>/rce/9.x/
reposi tories/), and haveto deploy the referenced repository builds to that new location.

A package import in Eclipse fails with the error message "The import xxx cannot be resolved"
although the imports and exports are set correctly in the respective Manifest files. What else
can | try to solve the problem?

Go to the Project Explorer and select the affected bundle. Open the context menu and select
"Plug-in Tools > Update Classpath...". Select al affected bundles (possibly including the
Fragment-Host) from the dialog list provided and finish.

13

Chapter 4. Coding Guidelines

4.1. Adding a new Bundle with Production
Code

4.1.1.

4.1.2.

Here, we describe how to add a new bundle to RCE. This bundle will only contain production code,
but no test code. In RCE, unit tests reside in "companion bundles' to those deployed in production.
The process for how to add a "testing bundl€" to RCE is undocumented as of yet.

RCE Structure

RCE isbuilt ontop of the Eclipse RCP framework. Speaking in terms of RCP, RCE isaproduct, which
consists of a number of features, which in turn consist of a number of plug-ins. The product itself
isdefinedinthefilede. r cenvi r onnent / maven/ nodul es/ r eposi t ory. mai nPr oduct /

rce_defaul t. product . Each feature and each plug-in corresponds to one top-level directory in
the RCE-repository. There exist, however, top-level directories which do not correspond to either a
feature or aplug-in, e.g., de. r cenvi r onnent .

A plug-in consists of anumber of Java packages and amanifest which defines how the feature interacts
with other features. Thisinteraction takestheform of, e.g. providing editors, views, or hooking into so-
called extension points defined by other features. Aswith most RCP-based applications, some features
of RCE are provided by Eclipse or some other third-party developer, while others are developed by
the RCE developers.

When compiling RCE, Maven compiles each feature and each plug-in more or lessindividually before
packaging all features and plug-insinto the resulting zip. At runtime, all plug-ins are connected to one
another using OSGi, which mainly serves as our dependency injection framework. Speaking in terms
of OSGi, each plug-in isan OSGi bundle and vice versa. We use the terms (Eclipse) Project, (OSGi)
Bundle, and (Eclipse) Plug-in interchangeably in this guide.

In order to create a new bundle, you have to

1. Create anew Eclipse project in atop-level directory in the root directory of the RCE repository

2. Add the new bundle (i.e., the new plug-in) to the Maven build process so that it is compiled and
packaged as a plugin when building viaMaven

3. Add the new plug-in to an existing feature so that it isincluded in the RCE product

We adress each of these pointsindividually in the following sections

Create a new Eclipse Project

There are two major ways to create a new Eclipse Project containing code for productive use: Either
by copying an existing bundle and subsequently importing that bundle into Eclipse, or by creating a
new bundle from scratch using the Eclipse IDE. Here, we only describe the former method.

First, choose some bundle identifier as well as a human-readable display name for your new bundle.
For this guide, we pick the identifier de. r cenvi r onnent . cor e. newbundl| e and the display
name RCE Core New Bundle.

14

Coding Guidelines

4.1.3.

Then, create a copy of some top-level directory in the repository and rename it with the name of your
bundle identifier. That directory should contain the subdirectories META- | NF, sr ¢, as well as the
files. checkstyl e,. cl asspath,. proj ect,buil d. properties,andpom xnl .

Adapt the file META- | NF/ MANI FEST. MF by changing the Bundl e- Nane to the display name of
your bundle and the Bundl e- Synbol i cName aswell asthe Aut onat i ¢- Modul eNane to the
identifier of your bundle. Moreover, since we are creating an empty bundlethat does not yet export any
Java packages or imports any dependencies, remove the entries Expor t - Package and | nport -
Package. After these changes, the file META- | NF/ MANI FEST. MF should look as follows:

Mani f est-Version: 1.0

Bundl e- Mani f est Ver si on: 2

Bundl e- Nanme: RCE Core New Bundl e

Bundl e- Synbol i cNarme: de. rcenvi ronnment . cor e. newbundl e
Bundl e- Version: 10.2.2.qualifier

Bundl e- Requi r edExecut i onEnvi ronnent: JavaSE-1. 8

Bundl e- Vendor: DLR

Aut omat i c- Mbdul e- Nane: de. rcenvi ronment . cor e. newbundl e

Remove the file . checkst yl e. We will direct Eclipse to regenerate that file towards the end of
this section.

Adapt thefilepom xm by settingthearti f act | d and the nane to theid and the display name
of your bundle, respectively. After these changes, the file pom.xml should look similar to this:

<project xm ns="http://maven. apache. org/ POM 4. 0. 0" xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena-

i nst ance"
xsi : schemalLocati on="http:// maven. apache. org/ POM 4. 0. 0 http:// maven. apache. or g/ naven-v4_0_0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<artifactld>de.rcenvironnent.core. newbundl e</artifact!|d>
<name>RCE Core New Bundl e</ name>

<ver si on>10. 2. 2- SNAPSHOT</ ver si on>

<packagi ng>ecl i pse- pl ugi n</ packagi ng>

<par ent >
<groupl d>de. r cenvi r onnent </ gr oup! d>
<artifactl|d>de.rcenvironnent.conponentgroups. st andard. parent</artifact!ld>
<versi on>1. 0. 0</ ver si on>
<rel ativePat h>../de.rcenvironnent. conponent groups. st andar d/ par ent .. ponx/rel ati vePat h>
</ par ent >
</ proj ect>

After finishing these adaptations, import the new bundle into RCE viaFile -> Inport ->
CGeneral -> Existing Projects into Wrkspace. Since you have copied an existing
Eclipse project, Eclipse should recognize the new project and import it.

Add the new Bundle to Maven

Recall that RCE can be built either via Eclipse (during development) or via Maven. Since you have
already imported your new project into Eclipsein the previousstep, it will automatically bebuilt during
development. Thus, it remains to include the new project / bundle / plug-in into the Maven build.

There exist multiple build scopes, each of which consists of a list of projects that Maven
should build. Each build scope is defined in an individial pom xmi file in a subdirectory of
de. rcenvi ronnent / maven/ nodul es. Pick one or more of these build scopes in which you
want to include your new bundle

Note

In most cases either conponent s. al | or cor e. conbi ned are areasonable choice of build scope.

Once you have picked a build scope, open the pom xm contained in that directory and add the path
to your new bundleto thelist of modules already contained inthepom xn . In our example, we pick
the build scope cor e. conbi ned and obtain afile de. r cenvi r onnent / maven/ nodul es/
cor e. conbi ned/ pom xm similar to the following:

<proj ect xm ns="http://mven. apache. org/ POM 4. 0. 0" xm ns: xsi ="htt p: // ww. w3. or g/ 2001/ XM_Schena-
i nst ance"

15

Coding Guidelines

4.1.4.

xsi : schemalLocati on="http:// maven. apache. org/ POM 4. 0. 0 http:// maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<artifactld>de.rcenvironnent. nodul es. core. conbi ned</artifactld>
<name>RCE Modul e ${project.artifactld}</nane>
<packagi ng>ponx/ packagi ng>

<par ent >
<gr oupl d>de. r cenvi r onnment </ gr oupl d>
<artifactld>de.rcenvironnent. maven. parent. nodul e</artifact!d>
<versi on>1. 0. 0</ ver si on>
<rel ativePath>../../parent/nodul e</rel ati vePat h>

</ par ent >

<nodul es>
... truncated for brevity ...
<nodul e>${ proj ects-root }/de. rcenvironnment. core. newbundl e</ nodul e>
. truncated for brevity ...
</ nodul es>
</ proj ect s>

Now your bundle will be compiled and packaged when building a snapshot. The resulting plug-in,
however, will not be included in the final snapshot: Recall that, speaking in terms of Eclipse RCP,
RCE isaproduct, which consists of features, which in turn consist of plug-ins. At this point, your new
plug-in is not yet part of afeature, thus it does not get deployed into the product.

Add the new Plug-in to the RCE product

Pick some existing feature to which you want to add your new plug-in. Features are
contained in top-level directories ending in . feature. In this example, we choose the
feature de. r cenvi ronnent . cor e. f eat ur e. Among others, this directory contains the file
feat ure. xm , which defines the plug-ins that constitute this feature. Y ou can either edit this file
via Eclipse or manually via atext editor of choice.

When opening the filein Eclipse, Eclipse will provide agraphical editor for thefile. Here, you can add
your new bundlevial ncl uded Pl ug-Ins -> Add. . ..If youareusingaplain text editor, add
an entry similar to <pl ugi n i d="de. rcenvi ronnent. core. newbundl e" downl oad-
size="0" install-size="0" version="0.0.0" unpack="fal se"/>asachild of
the top-level element <f eat ur e> inthefilef eat ure. xm .

Independently of the used method, your plug-in is now part of the feature you have chosen and will
be included in the RCE product.

4.2. Developing a new Component

4.2.1.

Component Bundle Setup

An RCE component usually consists of up to three OSGi bundles. named the execution, gui, and
common bundles:;

 Execution: Contains the component's lifecycle.

» GUI: Contains the user interface to configure the component. If a component does not require a
user interface this bundle can be ommitted.

» Common: Contains code resources which are used by both the execution and the GUI bundle. This
bundleis optional, too.

Note that in the context of Eclipse, OSGi bundles are called Plug-In Projects, and can be extended
with Eclipse-specific features. In practice, the terms bundle and plugin are often used interchangeably.

16

Coding Guidelines

4.2.2. Creating the execution Bundle

To start developing your first component, generate a new Eclipse Plug-In Project by selecting the
corresponding item in the menu bar:

File | Edit Source Refactor Mavigate Search Project Run Window Help

New Alt+Shift+MN ¥ | IgZ Plug-in Project
Open File... 4% Feature Project
= :
Close Ctew | [Project..
Close All Ctrl+Shift+W [T Task
Save CrlsS o Compenent Definition
B Savehs Preduct Configuration
~ SoveAl CurtsShifts§ | 8 Target Definition
Revert & Package
(& Class
Rlotes & Interface
E EepamEs 2 i Source Folder
b
&) Refresh B I[% Fie
Convert Line Delimiters To 3 &% | Folder
Print... Ctrl+P Y Example.
Switch Workspace 3 4 Other.. Cirl+M
Restart
E2g Import...
By Export...
Properties Alt+Enter

1 WizardToolConfiguraticnDialog.java
2 daketaSGBlocaljsen [dercenvironme..]
3 OptimizerComponentCenstants.java [d..]

4 daketaDOE_LHC jsen [de.rcenvironmen...]

Exit

Fill in the dialog properties to configure the plug-in project. The name of the new
project should match the RCE naming conventions. That means it should start with
"de.rcenvironment.components.” and end with ".execution"; so the full name of the execution
bundle should be "de.rcenvironment.components.<your conponenti d>.execution", where
<your conponent i d> isthe ID of your new component. Change the property "Source folder" to
"src/main/java’ and "Output folder" to "target”. Proceed by clicking "Next >".

17

Coding Guidelines

= Mew Plug-in Project = &

Plug-in Project ()
Create a new plug-in project

Project name: dercenvironment.compenents.yourcoemponentname.execution

Uze default location
C\Users\abbe_helworkspace\dercenvironment.compenent Browse...
Project Settings
Create a Java project
Source folder: src/main/java

Output folder: target

Target Platform
This plug-in is targeted to run with:

@ Eclipse version: 3.5 or greater -

(©) an O5Gi framework: | Equinox

Working sets
[7] Add project to working sets

Select...

3 . .
@) < Back Next > Finish

Now specify theversion of your component; you can choosethisfreely. The name of thisplugin should
always be "RCE Components <Your Conponent Name> Execution" for the execution bundle,
where<Your Conponent Name> again isyour component's display name. Pressthe "Finish" button
to complete the general configuration of this plugin.

18

Coding Guidelines

= Mew Plug-in Project

Content o J_ .
Enter the data required to generate the plug-in.

Properties

1D: de.rcenvironment.components.yourcomponentname. executior
Version: 3.2.0.qualifier

Mame: RCE Components YourCompenentName Execution

Vendor: -
Execution Environment: |JavaSE-1.6 v] IEnvironments...
Options

[7] Generate an activator, a Java class that controls the plug-in's life cycle
de.rcenvironment.compenents.yourcomponentname.execution. Activator

[] This plug-in will make contributions to the UI
[T Enable API analysis

Rich Client Application

Would you like to create a 3.x rich client application? I ¥es @ No

@ | <Back | Net> |[Fnish || Cancel |

Eclipse now creates the configured structure of folders, but the plugin is not ready for being used as
an RCE component yet.

Create a folder called "resources' in the project you just created. If you have icon files
for your component, put them into this folder. Supported formats are PNG, JPG, BMP and
GIF. We recommend a resolution of 16x16 and 32x32 pixels. Conventionally these icons are
namend "<your conponent nane>16.png" and "<your conponent nane>32.png". Also create
an "inputsjson”, an "outputsjson" and a "configuration.json" file in the resource folder you just
created, where you later define the inputs, outputs and configuration of your component.

Asadtart, the files can contain an empty JSON object as content. So it suffices to enter the following
text in these threefiles:

03 |

Note that the files must be present and must not be empty.

Now create a Java class in your source folder by right-clicking on "src/main/java’ in the Eclipse
Project Explorer. As this will be the central class of your component, give it a name like
"<Your Conponent Nane>Component.java' (<Your Conponent Name> is your component's
display name in camel case, and then add "Component.java'). This Java class must extend
de. rcenvi ronnent . core. conponent . nodel . spi . Def aul t Conponent .

To implement the functionality of your component override the according methods. The most basic
methods to be overriden are:

« processlnput: Iscalled whenever the component receives anew input. Inloopsthis method iscalled
multiple times.

 dstart: Iscalled at component start once. Initializations can be placed here.

« dispose: Is called when the component disposes. Clean up methods can be placed here to release
resources.

19

Coding Guidelines

Now create a folder caled "OSA -1 NF" in your project folder, by using the standard
Eclipse function (File->New->Folder). This folder will contain al OSGi service definitions
for your project. One way to create an OSGi service definition is creating a file
"<your Conponent Nanme>.xml" ("<your Conponent Nane>" is your own component's display
name again) and copying the following source code into it. Replace al occurences of
"<your Conponent Nanme>" with the display name of your component, and all occurences of
"<your conponent nane>" withitsid:

<?xm version="1.0" encodi ng="UTF-8"?>
<scr:conponent xm ns:scr="http://ww.osgi.org/xm ns/scr/vl. 1. 0"
factory="de. rcenvironment.rce. conponent” nane="<your conponent name>">
<i npl enent ati on cl ass="de. rcenvi ronnent. conponent s. <your conponent nane>.
execut i on. <your Conponent Nane>Conponent " />
<service>
<provi de interface="de.rcenvironnent.core.conponent.registration.api.Registerable" />
</ service>
<property nane="rce.conponent.class" type="String" val ue="de.rcenvironnent.conponents.
<your conponent nane>. execut i on. <your Conponent Nane>Conponent" />
<property nanme="rce. conponent.version" type="String" value="1.0" />
<property name="rce. conponent.name" type="String" val ue="<yourconponent nane>" />
<property nane="rce.conponent.group" type="String" value="Test" />
<property nanme="rce.conponent.icon-16" type="String" val ue="/resources/your conponent nanel6. png" />
<property nane="rce.conponent.icon-32" type="String" val ue="/resources/yourconponent nane32. png" />
<property name="rce.conponent.inputs" type="String" val ue="/resources/inputs.json" />
<property nane="rce.conponent.outputs" type="String" val ue="/resources/outputs.json" />
<property name="rce. conponent.configuration" type="String" val ue="/resources/configuration.json" />
</ scr: conponent >

Some of these definitions are optional or refer to elements that do not exist yet. Thefirst lines provide
the general XML header, followed by the OSGi root element. Thef act or y attribute is the part that
links this definition into the RCE framework. The nane attribute defines your component's name
when inspected with OSGi tools and should be the same asther ce. conponent . nane property
below. Thei nmpl enent ati on cl ass entry defines the main Java class of the component. The
rce. component . gr oup property setsthe GUI group in which your component will appear. (Since
the component is still under development, something like "Test" is a good choice for now.) The
rce. component . i con- 16 andr ce- component . i con- 32 propertiesare optional and define
theicon for your component. Ther ce. conmponent . i nput s, r ce. conponent . out put s and
rce. component . confi gur at i on attributes define the locations of configuration files that will
be described later.

The created plugin project automatically contains a folder named "META-INF'. Edit the
"MANIFEST.INF" filein thisdirectory by double-clicking it and selecting the"MANIFEST.MF" tab.
Add the following lines to it and save:

Servi ce- Component: OSG - | NF/ *. xml
RCE- Conponent: true
Export - Package: de.rcenvironnment.conponents. <your component nane>. executi on

Note that "Export Package: " and the first name have to be in the sameline. A second element would
be added in the next line with aleading space. Moreover the file must end with alinebreak.

Also note that errors containing "inconsistent hierarchies' can be solved by adding the required
referenced packages in the Import-Package property anal ogous to the Export-Package property.

Thefirst linetellsthe OSGi framework whereto look for the component declaration we created before.
The second line declares this plug-in as an RCE component. The last line makes the package of your
main class visible to other bundles, which is required so RCE can load and initialized the component.

Next, edit the "build.properties’ filein the main folder of your plugin project. This file should aways
look the same for the execution bundles and can be copied from the sample component. It should
look like this:

source.. = src/main/java
bi n.includes = META-| NF/,\
OSA - I NF/, \

resources/,\

20

Coding Guidelines

After this step, the plugin configuration is complete. It should look like this in the Eclipse Package
Explorer:

‘,'7‘J dercenvirenment.components.yourcomponentname.execution
» = JRE System Library [JavaSE-1.6]
4 B sre/main/java
a f}} dercenvironment.components.yourcomponentname.execution
- [J] YourComponenthameCompenentjava
4 = META-INF
4+ MANIFEST.MF
4 = OSGIINF
@l yourComponentMame.xml
4 (= resources
Configuration.json
Inputs.json
Qutputs.json
| yourcomponentnamel6.png
B yourcompeonentname3d2.png
= src
‘b build.properties

When you start RCE from Eclipse and open aworkflow file, your component should be shown in the
component pal ette on the right, in the group that you have set in the "OSGI-INF/..." XML file.

4.2.3. Creating a common Bundle

Generate a new Eclipse Plug-In Project by selecting the same option as in the "execution" bundle
section above. The project name should follow the RCE naming conventions, similar to the execution
bundle but ending with ".common" instead of ".execution”.

Add the Java classes to the source folder, within a package with the same name as the bundle's name
(or sub-packages of it). For holding shared constants, the usual convention is a Java class named
"<Your Conmponent Nanme>ComponentConstants.java". Createthisclass, and add your first constant
for defining the component id and adapt the placeholders in the usual manner:

public static final String COVPONENT_I D =
"de. rcenvi ronment . conponent s. <your conponent nane>
execut i on. <Your Conponent Name>Conponent " ;

In order to keep track of your constants, it's advisable to give al constants a short comment.

To complete the setup, add the names of the all Java packages you created to the "Export-Package"
attribute in the source code of the META-INF/MANIFEST.MF file. Example:

Export - Package: de.rcenvironnent. conponents. <your conponent name>. conmon

4.2.4. Creating a gui Bundle

To add agraphical user interface for your component, create a"gui" bundle. Start by generating a new
blank Eclipse Plug-In Project, as you did for the "execution" and "common" bundle.

The graphical user interface is shown in the properties tab which is usually shown at the bottom of
RCE when the component is focused in the workflow editor.

Custom sections can be defined. Therefore create a package called like the project containing it.

Inside the package create a class called "<Your Comrponent Nane>Section.java' which extends

de. rcenvironnent. core. gui . wor kf | ow. edi t or. properties. Wrkfl owNodePr opertySecti o
Override the method cr eat eConposi t eCont ent to fill the GUI.

21

Coding Guidelines

Each component GUI must provide a Component Filter. It is used to determine which
sections the GUI for the respective component consists of. Inside the package you
just created add a class caled "<Your Conponent Nane>ComponentFilter.java'. extending
de. rcenvironnent. core. gui . wor kf | ow. edi tor. properties. ConponentFilter.
To define the component filter, override the following method:

@verride
public bool ean filterConponent Name(String conponentld) {
return conponent!d. startsWth(Your Conponent NaneConponent Const ant s. COMPONENT_I D) ;

}

As usual, change Your Conrponent Nane to the name of your own component. This method will
only return t r ue for the component id used in the "execution" bundle, so it will only be shown for
that component.

To provide sections as GUI elements, add a new file called "plugin.xml" to the root of the project
folder. It is common to have a section where you can manage inputs and outputs and another section
where component specific GUI elements arelocated. The following code demonstrates thisand can be
pasted into the plugin.xml you just created. Asusual, adapt the component names and I Dsaccordingly.
It is explained below:

<?xm version="1.0" encodi ng="UTF-8"?>
<?ecl i pse version="3.2"?>
<pl ugi n>

<l-- Property Sections -->

<ext ensi on point="org.eclipse.ui.views.properties.tabbed. propertySections">
<propertySections contributorld=
"de. rcenvironnent.rce. gui . wor kf | ow. edi t or. Wor kf | owEdi t or " >

<propertySection
tab=
"wor kf | ow. edi t or. t ab. <your conponent i d>. General "
class=
"de. rcenvi ronnment . conponent s. <your conponent i d>.
gui . <your Conponent Nane>Secti on"
id=
"wor kf | ow. edi tor.tab. Properties. Section. General "
filter=
"de. rcenvi ronment. conponent s. <your conponent i d>.
gui . <your Conponent Nane>Conponent Fi | ter"
enabl esFor="1">

</ propertySection>

<propertySection
tab=
"wor kf | ow. edi t or. t ab. <your conponent i d>. | nput sQut put s"
class=
"de. rcenvi ronnent. core. gui . wor kf | ow. edi tor.
properties. Def aul t Endpoi nt PropertySecti on”
id=
"wor kf | ow. edi tor.tab. Properties. Section. | nput sQut puts"
filter=
"de. rcenvi ronnment. conponent s. <your conponent i d>.
gui . <your Conponent Nane>Conponent Fi | ter"
enabl esFor =
"1t >
</ propertySection>

</ propertySections>
</ ext ensi on>

<l-- Register Property Sections -->

<extension point="org.eclipse.ui.views.properties.tabbed. propertyTabs">
<propertyTabs contributorld=
"de. rcenvironnment.rce. gui . workfl ow. edi t or. Wr kf | owEdi t or ">

<propertyTab
| abel =" General "
cat egory="defaul t"
i d="wor kf | ow. edi tor. t ab. <your conponent i d>. Gener al ">
</ propertyTab>

<propertyTab

| abel =" nput s/ Qut put s"

cat egory="defaul t"

i d="wor kf | ow. edi t or. t ab. <your conponenti d>. | nput sQut put s" >
</ propertyTab>

22

Coding Guidelines

4.2.5.

</ propertyTabs>
</ ext ensi on>

</ pl ugi n>

For each section that you would like to add to the " Properties" view, add the entrieslike you can seein
the propertySection and the property Tab parts. Make sure that the "filter" attribute contains the correct
path of the component filter class created above. The first entry in property section and property tab
adds a general custom section to the GUI while the second entry adds a section to manage inputs and
outputs.

Remember to keep the file valid by closing the definition blocks with the corresponding end tags:
After assigning the property tabsto their classes, you have to register each tab asapr oper t yTab.

Note that the ID of the propertyTab should be the same as the "tab" in the propertySection above.
Customise the section title by editing the | abel attribute.

TODO: Add explanation how to use Messagesfile.

Adding your new component to SVN

It is recommended to develop a new component in a separate development branch. Therefore create
a new branch. One of the several ways to do so is using TortoiseSVN. Check out the trunk. In the
context menu of this folder select "TortoiseSVN > Branch/Tag". Navigate to the destination path
which should be located in the branches folder. Call the new branch "dev_Your Conponent Nane"
where Your Conponent Narre is the display name of your component. Then add the folders of the
projects you created above to the structure in your file system. Select them and right click to open the
context menu. Then select "TortoiseSVN > Add...". To commit them into the branch, open the context
menu again and select "Commit... ".

4.3. Logging

4.3.1.

4.3.2.

General Configuration

(TODO)

Verbose Logging

Some log messages are disabled by default as they produce large amounts of output, and are only
needed in special circumstances (typically, for debugging). Thisis called "verbose logging”, and is
controlled by the DebugSet t i ngs utility class. Typical usageisto initialize afinal (static or non-
static) field in the logging class with the returned setting, to only incur the configuration checking
overhead once:

* non-static field (preferred in most cases, as there is no risk of copying/pasting with
the wrong class parameter): private final bool ean verboselLogging =
DebugSet ti ngs. get Ver boselLoggi ngEnabl ed(get d ass());

o satic field / constant (preferred for classes that are instantiated very frequently):
private static final bool ean VERBCSE LOGE NG =
DebugSet ti ngs. get Ver boselLoggi ngEnabl ed(TheCl assNan®. cl ass) ;

23

Coding Guidelines

To control the verbose logging, set the rce.verboselLogging system
property. Example rce -p myProfile -vnar gs -
Drce. ver boselLoggi ng=*. NodePr operti esServi cel npl, *Wor kf | ow*. The syntax
of the pattern is a commarseparated list of identifiers. A "*" wildcard matches any part of the class
name, including the dot ("."). An empty string disables all verbose logging.

Note

Aswith any other VM property, this parameter must be placed behind the - vimar gs delimiter, which separatesit
from the "direct" RCE command-line arguments (like - - headl ess or-p <profi | e>). Thisruleaso applies
when adding this parameter toanr ce. i ni file.

If this system property is not Set, the
DebugSet ti ngs. DEFAULT_VERBOSE LOGE NG _PATTERN constant's value is used. While
developing in Eclipse, it can be useful to enter a verbose logging pattern there, as this affects all
local RCE instances at once without editing multiple launch configurations. (As usual, it is your
responsibility to make sure these local debug values are not commited into version control.)

Identifiers created before 8.1.0 were fully qualified Java class names; since 8.1.0, identifiers are
arbitrary strings. For existing identifiers, these strings were set to the pre-8.1.0 FQNs. Over time, al
existing identifiers are planned to be migrated to more intuitive strings.

The following table lists some identifiers that may be useful for debugging:

Table4.1. Useful Verbose Logging Identifiers

Identifier Description

NetworkRequests outgoing and received network requests and
responses, and possibly other related operations
(e.g. conversions)

24

Chapter 5. Debugging

5.1. Tips, Tricks, and Good Practices

5.1.1.

5.1.2.

5.1.3.

Here, we document tips, tricks, and good practices for debugging RCE. Since RCE iswritten in Java,
many of the standard good practices for debugging Java code apply to debugging RCE as well, such
as getting comfortable with the debugger integrated in Eclipse. As there are good general-purpose
tutorials out there, our aim in this section is not to repest already existing general advice. Instead, we
discuss tools and techniques that experience shows are not as well known.

Finding Resource Leaks in the Ul using S-Leak

Recall that SWT resources (suchasConposi t e,But t on, or Label) are not cleaned up completely
by the garbage collector. Instead, they must be manualy cleaned up by the developer via their
di spose method (cf. this article [https.//www.eclipse.org/articles/swt-design-2/swt-design-2.html]
for more information on managing SWT objects). Since this behavior differs from virtually al other
Javaobjects, it is easy for developersto overlook this cleanup. Thisleadsto "leaked" SWT resources,
i.e., to resources that are created, but never disposed of afterwards.

S-Leak isatool that aids in finding leaked SWT resources. It allows devel opers to take snapshots of
the currently allocated SWT resources and to create the diff between two such snapshots. Thus, the
developer can determine which resources have been allocated during certain user actions and compare
these all ocations with their expectations.

In order to use S-Leak, you have to start RCE with the system property r ce. debug. sl eak
defined. When starting RCE via Eclipse, you can do so by editing your preferred run
configuration (Run -> Run Configurations -> Arguments -> VM Arguments -> Add
- Drce. debug. sl eak). When sarting RCE as a standalone application, edit the file
rce.ini to include the line - Drce. debug. sl eak at some point after - virar gs. The
classde. rcenvi ronnment . core. start. gui . GJl | nst anceRunner interpretsthis system
property and starts S-Leak during startup of RCE.

Profiling RCE using VisualVM

Debugging GUI layouts using SWT Spy

When developing GUIs using Eclipse SWT, one often wants to have more information about how
the GUI of the running software is composed and what properties are set. One of the tools giving
such an overview is SWT spy (https://eclipsesource.com/de/blogs/2018/01/10/swt-spy-debugging-
swt-layouts/). In order to use this tool to debug the GUI of RCE started from Eclipse, follow these

steps:

1. Add the plug-in "SWT Tools' available from https:.//download.eclipse.org/eclipse/
updates/d.7/ to the target platform (de.rcenvironnent/eclipse/tp/renote/
default _rel ease_or_snapshot.target -> Add -> Software Site - > Work with
https://downl oad.eclipse.org/eclipse/updates/4.7/ - > Check the plug-in "SWT Tools', located in
the folder "Eclipse Tests, Tools, Examples and Extras' - > Finish). We show the wizard for adding
this plug-in below.

2. Reload the target platform.

25

https://www.eclipse.org/articles/swt-design-2/swt-design-2.html
https://www.eclipse.org/articles/swt-design-2/swt-design-2.html
https://eclipsesource.com/de/blogs/2018/01/10/swt-spy-debugging-swt-layouts/
https://eclipsesource.com/de/blogs/2018/01/10/swt-spy-debugging-swt-layouts/
https://download.eclipse.org/eclipse/updates/4.7/
https://download.eclipse.org/eclipse/updates/4.7/
https://download.eclipse.org/eclipse/updates/4.7/

Debugging

3. Add the newly avalable feature org.eclipse.swt.tools.feature to
the product definition of RCE (de. rcenvi r onnent / maven/ nodul es/
repository. mai nProduct/rce_defaul t. product -> Contents- > Add).

= Add Content O >

Add Software Site
Select content from a software site to be added to your target

Work with: |http5:_a'_a‘|:|u:uwnInad.eclipse.urg;’eclipsea’updates_a’d.?_a' w Add... Manage...
| SWT Tools] X
Mame Version

w [] 000 Eclipse Tests, Tools, Examples, and Extras

[] 4= SWT Tools 3.106.0.20170503-0851
Select All Deselect All 0'items selected
Details
Properties...
[~] Group by Category [] Show only the latest version

Included Software

By default, all required software is added to the target based on its envirenment settings. Turning this
option off allows software to be added with missing requirernents and multiple environments. This
setting applies to the entire target definition.

Include required software
Include all environments

Include source if available

Include configure phase

':?3' < Back Mext » Finish Cancel

The wizard for adding new plug-ins to the target platform. Select the plug-in "SWT Tools" in order
to add SWT spy to RCE.

After rebuilding and restarting RCE from Eclipse, you should now havetheview "SWT Spy" available
in RCE. When clicking the spy-icon in its upper menu bar, this view will show information about the
SWT construct that the cursor is currently pointing at. Using the shortcut Ct r | +Al t +Shi ft +. you
can toggle the SWT spy to keep the information about the currently selected element in the view of
the SWT spy to allow for further investigation about the information.

26

Chapter 6. Quality Assurance and
Testing

6.1. Automated GUI Testing

6.1.1.

Getting started

This section describes the required steps to run existing or create new automated GUI tests for RCE
using the RCP Testing Tools (RCPTT):

Download RCPTT from https://eclipse.org/rcptt/downl oad/
Download RCE from https://rcenvironment.de/pages/downl oad.html
Start RCPTT

In the view "Applications' add RCE as Application under test (AUT) via "New... ". Use RCE's
main folder as location.

Configure AUT (Rightclick on entry in "Applications" view -> Configure... -> Advanced...):

. Set aprofiledifferent from the default one to make sure your productive RCEswon't interfere with

RCPTT's RCE and vice versa. Therefore go to "Arguments' tab and add to Program arguments
e.g"-p my_rcptt_profile".

. Set dev_config: Download from dev_config.ini from https://svn.sistec.dIr.de/svn/rce/new/rce/

trunk/de.rcenvironment/eclipse/launch/installation_data/ [https://svn.sistec.dlr.de/svn/rce/new/
rce/trunk/de.rcenvironment/eclipse/launch/installation_data/dev_config.ini]

In"Configuration" tab select "Use an existing config.ini file as atemplate”" and navigate to the file
you just downloaded.

. Set launcher: In "Arguments' tab add the following VM argument: "-

Dde.rcenvironment.launcher=de.rcenvironment.launcher"

. Set allocate console for Stdln and StdOut: To access Stdin and StdOut directly from console

view in RCPTT go to "Common" tab and check "Allocate console (necessary for input)
Check if RCE can be started from RCPTT by doubleclicking ontheentry inthe"Applications" view

Now you can either run existing test cases (A) or create your own test cases (B):

A: Run existing test cases:

Create an RCP Testing Tool Project in the Test Explorer on the lefthand side

Checkout the following folder and add it to the project: https://svn.sistec.dir.de/svn/rce/new/rce/
trunk/de.rcenvironment/eclipse/ui-testing/RCPTT

In the folder "Testsuites' navigate to "AllPlatforms" and execute the testsuite (Rightclick -> Run
As-> Test Cases)

Find the Execution View on the bottom left which shows the progress of the testcases

27

https://eclipse.org/rcptt/download/
https://rcenvironment.de/pages/download.html
https://svn.sistec.dlr.de/svn/rce/new/rce/trunk/de.rcenvironment/eclipse/launch/installation_data/dev_config.ini
https://svn.sistec.dlr.de/svn/rce/new/rce/trunk/de.rcenvironment/eclipse/launch/installation_data/dev_config.ini
https://svn.sistec.dlr.de/svn/rce/new/rce/trunk/de.rcenvironment/eclipse/launch/installation_data/dev_config.ini
https://svn.sistec.dlr.de/svn/rce/new/rce/trunk/de.rcenvironment/eclipse/launch/installation_data/dev_config.ini
https://svn.sistec.dlr.de/svn/rce/new/rce/trunk/de.rcenvironment/eclipse/ui-testing/RCPTT
https://svn.sistec.dlr.de/svn/rce/new/rce/trunk/de.rcenvironment/eclipse/ui-testing/RCPTT

Quiality Assurance and Testing

» Do the same for the testsuite that matches your platform.
B: Createyour own test cases:

» For the next steps also refer to RCPTT's getting started guide: https://www.eclipse.org/reptt/
documentation/userguide/getstarted/

» Create an RCP Testing Tool Project in the Test Explorer on the lefthand side
» Create a Test Case within this project
» Capturescript via"Record" button in the upper right corner and then clicking around in RCE

» Capture verification by switching to Assertion Mode in the menu bar of the Control Panel and
then selecting some element in RCE

* Click save, stopp and then the Return to RCPTT/Home button
 Create a Context within the project (New -> Context). Contexts are proconditions for tests, e.g. to
make sure there is a clean setup. For instance, choose a context of type "Workspace" an leave the

default settings so it will clear the workspace upon being applied.

» Add the context to the test case by selecting the " Contexts' tab in thetest case, click "+" and choose
the one you just created.

* Replay script by clicking "Replay” in the upper right corner.

6.2. Integrated Test Script Runner

6.2.1.

The integrated "Test Script Runner” (TSR) was created to automate test sequences on one or more
RCE standaloneinstallations. These installations are automatically set up using an RCE feature called
"Instance Management” (IM), which is still under development, and therefore not fully documented
yet. However, the instructions below should be sufficient to configure this feature as needed for the
TSR.

Asof RCE 9.0.0, the Test Script Runner isincluded in the standard application release, as well asthe
standard Eclipse checkout. Therefore, very little configuration is required to useit.

Configuration

The only configuration that is reguired for using the TSR is adding an Instance Management
configuration to the RCE instance that will execute the test scripts. This defines the root directory
where work files and directories of managed RCE test installations will be stored. Locate the profile
directory that is being launched and edit its confi gur ati on. j son file. In this file, add this
configuration block on the root JSON level, and adjust the settings as necessary:

"i nstanceManagenment": {
"dataRootDirectory": "C\\M/Workdir\\rce-i mdat",
"installati onsRootDirectory": "C\\M/MWrkdir\\rce-iminst"

}

There are additional Instance Management configuration parameters available. These are, however
not usually needed for using the TSR.

28

https://www.eclipse.org/rcptt/documentation/userguide/getstarted/
https://www.eclipse.org/rcptt/documentation/userguide/getstarted/

Quiality Assurance and Testing

Note

It is strongly recommended to use a short full filesystem path as the dat aRoot Di rectory and the
install ati onsRoot Di r ect ory, as RCE installations will be placed inside of it, and long filesystem paths
are known to cause problems with these. The maximum Ienght will be determined, documented, and maybe also
automatically checked in the future.

6.2.2. Test Definitions

We use the language Gherkin [https://cucumber.io/docs/gherkin/], a structured natural
language, to define our tests and execute them using Cucumber [https://cucumber.io/
]. In the nomenclature of Gherkin, a single test is caled a scenario, while
multiple scenarios make up a feature. The tests are defined in *.feature files
in the directory / de. r cenvi ronment . suppl enent al . t est scri ptrunner. scripts/
resources/scripts.

Note

If you would like to edit . f eat ur e-files directly from Eclipse, we recommend using the Cucumber Eclipse
Plugin, which can be found in the Eclipse Marketplace.

We show one test (or scenario) below:

@tart0l
@efault TestSuite
Scenari o: Concurrent headl ess instance starting and stopping

G ven instances "Nodel, Node2, Node3, Node4, Node5" using the default build
Wien starting all instances concurrently
Then instances "Nodel, Node2, Node3, Node4, Node5" shoul d be running

When stopping all instances concurrently
Then the log output of all instances should indicate a clean shutdown with no warnings or errors

Each test has one or moretest | Dsdenoted by the annotation-like tags above theindivual test scenarios,
e.g. @t art 01 or @ef aul t Test Sui t e. These IDs serveto later refer to that test for execution.
The same ID may also be assigned to multiple tests. Thus, the test script runner can, e.g., be asked to
execute all tests with atest ID of Def aul t Test Sui t e. The values of the test IDs can be chosen
almost arbitrarily. The only reserved IDs are @i sabl ed and @li sabl ed, which prevent the test
from being executed at all.

In order to execute a test written in Gherkin, Cucumber requires an implementation of each
individual line in the test. Each line is called a test step, while the code implementing the
desired behavior is called a test step definition. In RCE, the test step definitions are location
in the bundle de. r cenvi ronment . suppl ement al . t est scri ptrunner in the package
de.rcenvironment. extras.testscriptrunner.definitions.inpl.Pleasereferto
those implementations for the canonical overview over available test steps. In the following, we list
some of the more commonly used test steps. We denote placeholders using angular brackets.

Given running instance <instance Starts an instance of RCE without a GUI. The instance id is

id> using the default build used to refer to thisinstance in later test steps.

When executing workflow Executes the given workflow on the given

<workflow id> on node <instance instance and waits for the termination

id> of that workflow. The workflow id
must correspond to the basename of a
workflow file in the directory

de. rcenvironnent. suppl enental .t estscri ptrunner. scripts
resour ces/ scri pt s/ workfl ows, i.e, the file name
without the suffix . wf .

Then that workflow runshouldbe Can only be used after using the test step
identical to <golden master id> "When executing workflow <workflow id> on node

29

https://cucumber.io/docs/gherkin/
https://cucumber.io/docs/gherkin/
https://cucumber.io/
https://cucumber.io/

Quiality Assurance and Testing

<instance id>". Asserts that the workflow execution

is identical to that sored in the directory

de. rcenvironnent. suppl enental .t estscriptrunner. scripts
resour ces/ scripts/gol den_nasters. The golden

master id must correspond to the basename of a file in that

directory, i.e., to the file name without the suffix . j son. You

can export a workflow execution to serve as a golden master

viathe commandtc export_wf _run in arunning RCE

instance.

6.2.3. Executing Tests

The TSR isinvoked by a single RCE console command (r un-t est), with an alias for readability
(run-tests). Thegenera syntax is:

run-test[s] [--format pretty|json] <conma-separated |ist of test
ids>--all <build id>

By default, the result of the test is printed in human-readable format. If you would like output in the
JSON-format instead, you may use the option - - f or mat , which requires either pretty or j son
asits only parameter.

There are three typical scenarios for calling this command:

 from within an RCE instance launched from Eclipse during development, usually using the GUI
workflow console

 from within a standalone RCE instance, also usualy using the GUI workflow console
 asaCll batchrun(rce --batch "...") usingastandaloneinstance.

The RCE installation to be tested is defined by the <bui | d i d> parameter in the above command.
One important aspect to understand is that thisinstallation is generally independent of the installation
being used to execute the TSR command. Thelatter is, in asense, only the "host" of test scripts. There
are three ways of specifying the build to test:

1. A build download id, which corresponds to a certain part of the standard download URL, for
examplesnapshot s/ trunk orr el eases/ 9. 0. 0. The structure should be self-explanatory.
(The major release tree to use for snapshot builds is one of the optional Instance Management
settings mentioned above; the default isto use the current major version, ie 9.x.)

2. A pathto an unpacked local standalone (product) build, which can, for example, result from alocal
build run or from unpacking adownloaded product zip file. The syntax for thisisl ocal : <l ocal
i nstal |l ati on pat h>. Thisdirectory can be either writable or read-only. For example, it is
also possible to test a (read-only) .deb or .rpm package installation this way.

Note that this path must point to an already-unpacked RCE build, unlike the first approach, which
downloads zipped release packages and unpacks them automatically.

3. As it is a frequent use case when testing standalone builds to execute the test command the
installation itself, there is a convenient shortcut for this. By specifying : sel f asthebuildid, the
test scripts are executed on the installation of the instance used to run the test command.

Note that due to technical limitations, however, this shortcut is not possible when launching RCE
from Eclipse, asthe test scripts require a standard product build to execute.

Recall that each test has one or more test ids, denoted by annotation-like tags. These test ids can be
specified in the command r un-t est [s] with or without the @character. "- - al | " executes all
available test scenarios.

30

Quiality Assurance and Testing

6.2.4.

Examples

e run-test Test02, Test04 snapshots/trunk - runstwo specific tests on the latest

snapshot build

e run-test --format pretty Test02, Test04 snapshots/trunk - equivaent to

the command above

e run-test --format json Test02, Test 04 snapshots/trunk - runstwo specific

tests on the latest snapshot build and outputs the result in JSON format

e run-test DefaultTestSuite :self -runsthedefault collection of tests on the current

installation

e run-test --all local:/tnp/local-rce-build - runsall available tests on alocal

build

e rce --batch "run-test DefaultTestSuite :self" -thefull command linefor the

standard self-test of an installation

31

Chapter 7. Command Console

7.1. RCE’'s Command Console

7.1.1.

RCE features a command console.

This command console is accessible via the command console view in RCE’s desktop mode or via
SSH. Commands consist of one or two tokens e.g. "im" for one token and "im list" for two tokens.
Beside the user commands that are documented in RCE’ s User Guide, there are devel oper commands
supporting additional developer features. A list of al developer commands is shown in the following
section.

Commands

Commands are structured in groups. A command group is defined by the first token of a command.
This means, that commands like "im info" and "im list" are in the same command group. Some
command groups like "stats" consist only of a single command. For each group there is a table
explaining al the related commands.

The'dev' command

Command Description

dev <command group> [--detail§-d] [--asciidoc] |Alias of "help --dev".

<command group>: (optional) the command
group of which the commands should be shown
[--details|-d] : show details of the commands
[--asciidoc]: output in asciidoc format

The'dm' command

Command Description

dm create-test-data [--prefix <prefix>] [-- Createstest datain the database.

workflows <workflow number>] [--iterations _ _ .

<iterations number>] [--allowedDeviation [--prefix <prefix>]: prefix for created workflows
<deviation>] [--smallfiles|-s] [--bigfiles|-b] [--wor kfl ows <workflow number>]: name for

created workflows

[--iterations <iterations number>]: number of
iterations

[--allowedDeviation <deviation>]: alowed
deviation in %, standard value is 20%
[--smallfileg|-s]: small input files for
components

[--bigfiles|-b]: big input files for components

The'dummy' command

Command Description

dummy Prints a test message.

The'force-crash’ command

32

Command Console

Command

Description

force-crash <delay>

"kills* the instance without proper shutdown
at <delay> milliseconds after the command is
executed.

<delay>: delay in milliseconds

The'im' command

Command

Description

im configure <instances...> [--set-rce-version
<version>] [--apply-template <template

name>] [--set-name <name>] [--set-comment
<comment>] [--set-relay-option <(isrelay)>] [--
set-workflow-host-option <(is worflow host)>]
[--set-custom-node-id <node id>] [--set-tempdir-
path <tempdir>] [--add-server-port <id> <host>
<port>] [--add-connection <id> <host> <port>
<auto-connect>] [--remove-connection <id>]
[--configure-ssh-server <ip> <port>] [--add-
ssh-account <username> <role> <enable ssh-
account> <password>] [--remove-ssh-account
<username>] [--set-ip-filter-option <(hasip-
filter)>] [--enable-im-ssh-access <port>] [--set-
reguest-timeout <r timeout>] [--set-forwarding-
timeout <f timeout>] [--add-all owed-inbound-
ip <ip>] [--remove-allowed-inbound-ip <ip>]
[--add-ssh-connection <name> <display name>
<host> <port> <login name>] [--remove-ssh-
connection <name>] [--add-uplink-connection
<ip> <hostname> <port> <client id> <is
gateway> <connect on startup> <auto-retry>
<username> <passwrod keyword> <password>]
[--remove-uplink-connection <id>] [--publish-
component <name>] [--unpublish-component
<name>] [--set-background-monitoring <id>
<interval>] [--reset] [--wipe] [--disable-ssh-
server]

Configures the configuration.json file of the
specified RCE instance(s).

<instances...>: list of instances to manage
[--set-rce-version <version>]: setstherce
version of the instances. (Does not work on
existing instances.)

[--apply-template <template name>]: applies
(i.e. copies) the given template as the new
configuration

[--set-name <name>]: sets the name of the
instance

[--set-comment <comment>]: sets agenera
comment

[--set-relay-option <(isrelay)>]: setsor clears
therelay flag

[--set-wor kflow-host-option < (is worflow
host)>]: sets or clears the workflow host flag
[--set-custom-node-id <node id>]: adds an
override value for the node' s network id; use
with caution!

[--set-tempdir-path <tempdir>]: setsthe root
path for RCE’s temporary files directory
[--add-server-port <id> <host> <port>]:
adds a new server port and sets the ip and port
number to bind to

[--add-connection <id> <host> <port> <auto-
connect>]: adds new connection to the given ip/
hostname and port, and whether it should auto-
connect

[--remove-connection <id>]: removes a
connection

[--configure-ssh-server <ip> <port>]: enables
the ssh server and sets the ip and port to bind to
[--add-ssh-account <username> <role>
<enable ssh-account> <password>]: adds an
SSH account

[--remove-ssh-account <username>]: removes
an SSH account

[--set-ip-filter-option < (hasip-filter)>]: enables
or disablesthe ip filter; default: true
[--enable-im-ssh-access < port>]: enables and
configures SSH forwarding of RCE console
commands by the IM "master" instance
[--set-request-timeout <r timeout>]: setsthe
reguest timeout in msec

[--set-forwar ding-timeout <f timeout>]: setsthe
forwarding timeout in msec

33

Command Console

Command

Description

[--add-allowed-inbound-ip <ip>]: adds/allows
an inbound | P address to the filter
[--remove-allowed-inbound-ip <ip>]: removes
disallows an inbound | P address from the filter

[--add-ssh-connection <name> <display hame>
<host> <port> <login name>]: adds anew ssh
connection

[--remove-ssh-connection <name>]: removes a
ssh connection

[--add-uplink-connection <ip> <hostname>
<port> <client id> <is gateway> <connect on
startup> <auto-retry> <username> <passwrod
keyword> <password>]: adds a new uplink
connection

[--remove-uplink-connection <id>]: removes an
uplink connection

[--publish-component <name>]: publishes a
new component

[--unpublish-component <name>]: unpublishes
a component

[--set-background-monitoring <id>
<interval>]: enables background monitoring
with the given interval (in seconds)

[--reset]: resets the instance to an empty
configuration

[--wip€]: wipesthe instance
[--disable-ssh-server]: disables the ssh server

im dispose <instances...>

Disposes the specified instance meaning deletion
of the profile directory.

<instances...>: list of instances to manage

iminfo

Shows additional information.

iminstall <install policy: if-missing|force-
download|force-reinstal|l> <major version>
<installation id> [--timeout <timeout>]

Downloads and installs a new RCE installation.

<install policy: if-missing|force-download|force-
reinstall>: specify install policy

<major version>: syntax format: [<major
version>]/<url version id/part>

<installation id>: id for the installation
[--timeout <timeout>]: specifies the maximum
length of time this command is allowed to run
(in seconds) - default = 60s

im list <affected items: all|instances|installations|
templates>

Lists information about instances, installations
or templates.

<affected items: all|instances|installations|
templates>: specify group of affected items

imreinstall <install policy: if-missing|force-
download|force-reinstal> <major version>
<installation id>

Stops all instances running the given
installation id, downloads and installs the new
RCEingtallation, and starts the instances again
with the new installation.

<ingtall policy: if-missing|force-download|force-
reinstall>: specify install policy

Command Console

Command

Description

<major version>: syntax format: [<mgjor
version>]/<url version id/part>
<installation id>: id for the installation

im restart <instances...> <installation id> [--
timeout <timeout>] [--gui <start with gui>] [--
command-arguments <command arguments>]

Restarts alist of RCE instances with the given
instance I Ds and the given installation.

<instances...>: list of instances to manage
<installationid>: id for the installation
[--timeout <timeout>]: specifies the maximum
length of time this command is alowed to run
(in seconds) - default = 60s

[--gui <start with gui>]: option to start with gui
- standard <false>

[--command-ar guments < command
arguments>]: additional command arguments

im start <instances...> <installation id> [--
timeout <timeout>] [--gui <start with gui>] [--
command-arguments <command arguments>]

Starts alist of new RCE instances with the
desired instance | Ds and the desired installation.

<instances...>: list of instances to manage
<installationid>: id for the installation
[--timeout <timeout>]: specifies the maximum
length of time this command is allowed to run
(in seconds) - default = 60s

[--gui <start with gui>]: option to start with gui
- standard <false>

[--command-ar guments <command
arguments>]: additional command arguments

im start-all <installation id> [--timeout
<timeout>] [--command-arguments <command
arguments>]

Starts all available instances. Uses the given
installation.

<installation id>: id for the installation
[--timeout <timeout>]: specifies the maximum
length of time this command is alowed to run
(in seconds) - default = 60s

[--command-ar guments < command
arguments>]: additional command arguments

im stop <instances...> [--timeout <timeout>]

Stops alist of running RCE instances.

<instances...>: list of instances to manage
[--timeout <timeout>]: specifies the maximum
length of time this command is allowed to run
(in seconds) - default = 60s

im stop-all <installation id> [--timeout
<timeout>]

Stops all running instances.

<installation id>: id for the installation
[--timeout <timeout>]: specifies the maximum
length of time this command is alowed to run
(in seconds) - default = 60s

The'net' command

Command

Description

net bench <taskdef>

Run communication benchmark.

35

Command Console

Command

Description

<taskdef>: <targetNodel* >([<numM essages>],
[<requestSize>],[<responseSize>],
[<responseDelay(msec)>],[<threadsPerTarget>])

net graph <base name> [--all|-a]

Generates a Graphviz file of the current network
topology.

<base name>: base name parameter
[--all|-a] : include unreachable nodes

net np

Show known RCE node properties.

The'osgi' command

Command

Description

osgi <command> [-o <filename>]

Executes an OSGi/Equinox console command;
use -0 to write text output to afile.

<command>: osgi command
[-o <filename>]: text output to afile

The'ra command

Command

Description

ra cancel <session token>

Cancels a session.

< session token>: token of the session

radescribe-tool <tool id> <tool version> [-n
<tool nodeid>] [--template]-t]

Prints names and data types of thetool’s or
workflow’ s intputs and outputs.

<tool id>: id of the tool

<tool version>: version of the tool
[-n <tool nodeid>]: set tool nodeid
[--template]-t] : make template

ra describe-wf <workflow id> <workflow
version>

Prints names and data types of thetool’s or
workflow’ s intputs and outputs.

<workflow id>: id of the workflow
<workflow version>: version of the workflow

ra dispose <session token>

Rel eases resources used by a remote access
session.

< on token>: token of the session

raget-doc-list <tool id> <tool version>

Get tool documentation list.

<tool id>: id of the tool
<tool version>: version of the tool

ra get-tool-doc <session token> <tool id> <tool
version> <tool node id> <hash value>

Download documentation.

<session token>: token of the session
<tool id>: id of the tool

<tool version>: version of the tool
<tool nodeid>: id of the tool node
<hash value>: hash value

rainit [--compact|-c]

Initializes a remote access session, and returns a
session token.

36

Command Console

Command

Description

[--compact|-c]: compact output

ralist-tools [-f <format>] [--with-load-data
<time span> <time limit>]

Listsall available tool ids and versions for the
"run-tool" command.

[-f <format>]: output format
[--with-load-data <time span> <timelimit>]:
load data

ralist-wfs[-f <format>]

Lists all available workflow ids and versions for
the "list-wfs'command.

[-f <format>]: output format

ra protocol-version

Prints the protocol version of thisinterface.

rarun-tool <session token> <tool id> <tool
version> [-n <tool node id>] [-p <parameters...
>] [--dynlInputs <dyn inputs>] [--dynOutputs
<dyn outputs>] [--nonReglnputs <non req
inputs>] [--show-output|-0] [uncompressed
upload|-u] [simple description format|--simple]

Invokes atool by itsid and version.

<session token>: token of the session

<tool id>: id of the tool

<tool version>: version of the tool

[-n <tool nodeid>]: set tool nodeid

[-p <parameters...>]: additional parameters
[--dynInputs <dyn inputs>]: dynamic inputs
[--dynOutputs <dyn outputs>]: dynamic outputs
[--nonRegl nputs <non req inputs>]: non
required inputs

[--show-output|-0] : shows output
[uncompressed upload|-u]: Thisisacommand
flag

[simple description format|--simpl€e]: Thisisa
command flag

rarun-wf <session token> <workflow id>
<workflow version> [-p <parameters...>] [--
show-output|-0]

Invokes a published workflow by itsid.

< session token>: token of the session
<workflow id>: id of the workflow
<workflow version>: version of the workflow
[-p <parameters...>]: additional parameters
[--show-output|-0] : shows output

The'run-test' command

Command

Description

run-test <tag name filters...> <build under test
id> [--format <pretty|json>]

Run atest.

<tag namefilters...>: filter for tag names
<build under test id>: build version to be used
[--format <pretty|json>]: output format

The'run-tests command

Command

Description

run-tests <tag name filters...> <build under test
id> [--format <pretty|json>]

(alias of "run-test").

<tag namefilters...>: filter for tag names
<build under test id>: build version to be used
[--format <pretty|json>]: output format

The'stats command

37

Command Console

Command

Description

stats

Show internal statistics.

The'tasks command

Command

Description

tasks [--all|-a] [--uniquel-i]

Show information about internal tasks.

[--all|-a]: Show all tasks, including inactive ones
[--uniquel-i]: Extended information: list tasks
with auniqueid

The'tc' command

Command

Description

tc close view <close view parameter>

Closes a GUI view.

<close view parameter>: one of the
following view keysisavalid input:
[Workflow_List, Log, Optimizer,

Data Management_Browser, CPACS Writer,
Properties, Component_Publishing,
Cluster_Job_Monitor, TIGL_Viewer,
Workflow_Console, Timeline, Excel,
Parametric_Study, Command_Console,
Network]

tc close_welcome

Closes the welcome screen if present.

tc compare_wf_runs <abs export workflow
path> <abs export workflow path>

Compares the two given workflowruns and
indicates if they are identical or wether their are
differences.

<abs export workflow path>: absolute path to
exported workflowrun
<abs export workflow path>: absolute path to
exported workflowrun

tc export_all_wf_runs <abs path to export dir>

Exports all workflow runsinto the given export
directory.

<abs path to export dir>: absolute path to export
directory

tc export_wf_run <absolute directory path>
<workflow title>

Exports the run corresponding to the
workflowtitle to the given directory.

<absolute directory path>: absolute path to
directory
<workflow title>: title of the workflow

tc open_view <open view parameter>

Opens a GUI view and setsfocusto it.

<open view parameter>: one of the
following view keysisavalid input:
[Workflow_List, Log, Optimizer,

Data Management_Browser, CPACS Writer,
Properties, Component_Publishing,
Cluster_Job_Monitor, TIGL_Viewer,
Workflow_Console, Timeline, Excel,

38

Command Console

7.1.2.

Command Description

Parametric_Study, Command_Console,
Network]

The'wf' command

Command Description

wf check-self-test-cases Check if all test workflows are part of at least
onetest case.

wf graph <workflow file> Prints .dot string representation of aworkflow
(can be used to create graph visualization with
Graphviz).
<workflow file>: path to the workflow file

wif list-self-test-cases List available test cases for wf self-test.

wf self-test [--dispose <onfinished|never| Batch test workflow files of the test workflow

always>] [--delete <onfinished|neverjalways>] |[files bundle.
[--pr <paralél runs>] [--sr <sequential runs>] [--
python <python exe path>] [--cases <cases...>] |[--dispose <onfinished|never|always>]: dispose
behaviour

[--delete <onfinished|never|always>]: deletion
behaviour

[--pr <parallel runs>]: number of parallel runs
[--sr <sequential runs>]: number of sequential
runs

[--python <python exe path>]: path to
python.exe

[--cases <cases...>]: parameter for the cases

Parameters

RCE commands can use three different types of parameters. These are positional parameters, named
parameters and flags. Positional and named parameterstake at | east one value. However, some of them
also take a list parameters. List parameters are denoted by three dots after their name in the tables
above, while parameters that take only a single value do not have it, e.g. <parameter...>. Multiple
valuesfor list parameters are entered using comma separation, e.g. value0, valuel, value2.

Positional

Positional parameters must be entered immediately after acommand. The order of the parameters must
befollowed for the command to process the parameters correctly. After al positional parameters have
been entered, other types of parameters can be entered.

Named

Named parameters are optional parameters. The command input of these parameters always start with
adouble dash, e.g. --name. The value must be specified after the parameter name.

Flag

Command flags are used to modify the operation of acommand. They are always optional. Flags start
with adash or adouble dash. A single dash is used for flags consisting of only asingle character, e.g.
-a. Double dash is used for flags composed of more than one |etter, e.g. --all. Thislong form is more
descriptive and is therefore easier to understand. Command flags can have both long and short form,
e.g. -aand --all, which do not differ in execution.

39

Command Console

7.1.3. Documentation generation

Part of this documentation is automatically generated. This is done by executing the help
--asciidoc command in RCE. The output of this command has to be copied to the file
de.rcenvironment.documentation.cor e/sr ¢/asciidoc/gener ated/user-commands.ad. This can be

done by using the saveto command.

40

Chapter 8. Licensing and Copyright

8.1. Copyright Statements

8.1.1. Current Year Definition

In copyright statements, the current year is defined. Each year, it must be updated at the following
places (files):

 Header in Java sourcefiles
« featurexml files
» About dialog (de.rcenvironment.core.start/about.mappings)

 Splash images ([..].gui.branding.[..]/splash.bmp)

41

